Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
mBio ; 15(1): e0225923, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38063379

RESUMO

IMPORTANCE: Phase variation allows a single strain to produce phenotypic diverse subpopulations. Phase-variable restriction modification (RM) systems are systems that allow for such phase variation via epigenetic regulation of gene expression levels. The phase-variable RM system SsuCC20p was found in multiple streptococcal species and was acquired by an emerging zoonotic lineage of Streptococcus suis. We show that the phase variability of SsuCC20p is dependent on a recombinase encoded within the SsuCC20p locus. We characterized the genome methylation profiles of the different phases of SsuCC20p and demonstrated the consequential impact on the transcriptome and virulence in a zebrafish infection model. Acquiring mobile genetic elements containing epigenetic regulatory systems, like phase-variable RM systems, enables bacterial pathogens to produce diverse phenotypic subpopulations that are better adapted to specific (host) environments encountered during infection.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Animais , Streptococcus suis/genética , Streptococcus suis/metabolismo , Epigênese Genética , Enzimas de Restrição-Modificação do DNA/genética , Peixe-Zebra/microbiologia , Virulência , Larva/microbiologia , Epigenoma , Transcriptoma , Infecções Estreptocócicas/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
2.
New Microbes New Infect ; 54: 101158, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37416863

RESUMO

The International Committee on Systematics of Prokaryotes (ICSP) discussed and rejected in 2020 a proposal to modify the International Code of Nomenclature of Prokaryotes to allow the use of gene sequences as type for naming prokaryotes. An alternative nomenclatural code, the Code of Nomenclature of Prokaryotes Described from Sequence Data (SeqCode), which considers genome sequences as type material for naming species, was published in 2022. Members of the ICSP subcommittee for the taxonomy of the phylum Chlamydiae (Chlamydiota) consider that the use of gene sequences as type would benefit the taxonomy of microorganisms that are difficult to culture such as the chlamydiae and other strictly intracellular bacteria. We recommend the registration of new names of uncultured prokaryotes in the SeqCode registry.

3.
Microb Genom ; 9(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37486739

RESUMO

Chlamydia psittaci is a globally distributed veterinary pathogen with zoonotic potential. Although C. psittaci infections have been reported in various hosts, isolation and culture of Chlamydia is challenging, hampering efforts to produce contemporary global C. psittaci genomes. This is particularly evident in the lack of avian C. psittaci genomes from Australia and New Zealand. In this study, we used culture-independent probe-based whole-genome sequencing to expand the global C. psittaci genome catalogue. Here, we provide new C. psittaci genomes from two pigeons, six psittacines, and novel hosts such as the Australian bustard (Ardeotis australis) and sooty shearwater (Ardenna grisea) from Australia and New Zealand. We also evaluated C. psittaci genetic diversity using multilocus sequence typing (MLST) and major outer membrane protein (ompA) genotyping on additional C. psittaci-positive samples from various captive avian hosts and field isolates from Australasia. We showed that the first C. psittaci genomes sequenced from New Zealand parrots and pigeons belong to the clonal sequence type (ST)24 and diverse 'pigeon-type' ST27 clade, respectively. Australian parrot-derived strains also clustered in the ST24 group, whereas the novel ST332 strain from the Australian bustard clustered in a genetically diverse clade of strains from a fulmar, parrot, and livestock. MLST and ompA genotyping revealed ST24/ompA genotype A in wild and captive parrots and a sooty shearwater, whilst 'pigeon-types' (ST27/35 and ompA genotypes B/E) were found in pigeons and other atypical hosts, such as captive parrots, a little blue penguin/Korora (Eudyptula minor) and a zebra finch (Taeniopygia guttata castanotis) from Australia and New Zealand. This study provides new insights into the global phylogenomic diversity of C. psittaci and further demonstrates the multi-host generalist capacity of this pathogen.


Assuntos
Chlamydophila psittaci , Psitacose , Animais , Chlamydophila psittaci/genética , Tipagem de Sequências Multilocus , Plumas , Austrália , Psitacose/veterinária , Columbidae , Genômica
4.
J Bacteriol ; 205(3): e0046222, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36856428

RESUMO

Neisseria meningitidis (meningococcus) colonizes the human nasopharynx, primarily as a commensal, but sporadically causing septicemia and meningitis. During colonization and invasion, it encounters different niches with specific nutrient compositions. Small noncoding RNAs (sRNAs) are used to fine-tune expression of genes, allowing adaptation to their physiological differences. We have previously characterized sRNAs (Neisseria metabolic switch regulators [NmsRs]) controlling switches between cataplerotic and anaplerotic metabolism. Here, we extend the NmsR regulon by studying methylcitrate lyase (PrpF) and propionate kinase (AckA-1) involved in the methylcitrate cycle and serine hydroxymethyltransferase (GlyA) and 3-hydroxyacid dehydrogenase (MmsB) involved in protein degradation. These proteins were previously shown to be dysregulated in a ΔnmsRs strain. Levels of transcription of target genes and NmsRs were assessed by reverse transcriptase quantitative PCR (RT-qPCR). We also used a novel gene reporter system in which the 5' untranslated region (5' UTR) of the target gene is fused to mcherry to study NmsRs-target gene interaction in the meningococcus. Under nutrient-rich conditions, NmsRs downregulate expression of PrpF and AckA-1 by direct interaction with the 5' UTR of their mRNA. Overexpression of NmsRs impaired growth under nutrient-limiting growth conditions with pyruvate and propionic acid as the only carbon sources. Our data strongly suggest that NmsRs downregulate propionate metabolism by lowering methylcitrate enzyme activity under nutrient-rich conditions. Under nutrient-poor conditions, NmsRs are downregulated, increasing propionate metabolism, resulting in higher tricarboxylic acid (TCA) activities. IMPORTANCE Neisseria meningitidis colonizes the human nasopharynx, forming a reservoir for the sporadic occurrence of epidemic invasive meningococcal disease like septicemia and meningitis. Propionic acid generated by other bacteria that coinhabit the human nasopharynx can be utilized by meningococci for replication in this environment. Here, we showed that sibling small RNAs, designated NmsRs, riboregulate propionic acid utilization by meningococci and, thus, colonization. Under conditions mimicking the nasopharyngeal environment, NmsRs are downregulated. This leads to the conversion of propionic acid to pyruvate and succinate, resulting in higher tricarboxylic acid cycle activity, allowing colonization of the nasopharynx. NmsRs link metabolic state with colonization, which is a crucial step on the trajectory to invasive meningococcal disease.


Assuntos
Infecções Meningocócicas , Neisseria meningitidis , Pequeno RNA não Traduzido , Humanos , Propionatos/metabolismo , Regiões 5' não Traduzidas , Irmãos , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Piruvatos/metabolismo
5.
J Innate Immun ; : 1-18, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36473432

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) has been classified as a high priority pathogen by the World Health Organization underlining the high demand for new therapeutics to treat infections. Human group IIA-secreted phospholipase A2 (hGIIA) is among the most potent bactericidal proteins against Gram-positive bacteria, including S. aureus. To determine hGIIA-resistance mechanisms of MRSA, we screened the Nebraska Transposon Mutant Library using a sublethal concentration of recombinant hGIIA. We identified and confirmed the role of lspA, encoding the lipoprotein signal peptidase LspA, as a new hGIIA resistance gene in both in vitro assays and an infection model in hGIIA-transgenic mice. Increased susceptibility of the lspA mutant was associated with enhanced activity of hGIIA on the cell membrane. Moreover, lspA deletion increased susceptibility to daptomycin, a last-resort antibiotic to treat MRSA infections. MRSA wild type could be sensitized to hGIIA and daptomycin killing through exposure to LspA-specific inhibitors globomycin and myxovirescin A1. Analysis of >26,000 S. aureus genomes showed that LspA is highly sequence-conserved, suggesting universal application of LspA inhibition. The role of LspA in hGIIA resistance was not restricted to MRSA since Streptococcus mutans and Enterococcus faecalis were also more hGIIA-susceptible after lspA deletion or LspA inhibition, respectively. Overall, our data suggest that pharmacological interference with LspA may disarm Gram-positive pathogens, including MRSA, to enhance clearance by innate host defense molecules and clinically applied antibiotics.

7.
Front Cell Infect Microbiol ; 12: 1020201, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211969

RESUMO

Neisseria meningitidis or the meningococcus, can cause devasting diseases such as sepsis and meningitis. Its polysaccharide capsule, on which serogrouping is based, is the most important virulence factor. Non-encapsulated meningococci only rarely cause disease, due to their sensitivity to the host complement system. How the capsular polysaccharide structure of N. meningitidis relates to virulence is largely unknown. Meningococcal virulence can be modeled in zebrafish embryos as the innate immune system of the zebrafish embryo resembles that of mammals and is fully functional two days post-fertilization. In contrast, the adaptive immune system does not develop before 4 weeks post-fertilization. We generated isogenic meningococcal serogroup variants to study how the chemical composition of the polysaccharide capsule affects N. meningitidis virulence in the zebrafish embryo model. H44/76 serogroup B killed zebrafish embryos in a dose-dependent manner, whereas the non-encapsulated variant was completely avirulent. Neutrophil depletion was observed after infection with encapsulated H44/76, but not with its non-encapsulated variant HB-1. The survival of embryos infected with isogenic capsule variants of H44/76 was capsule specific. The amount of neutrophil depletion differed accordingly. Both embryo killing capacity and neutrophil depletion after infection correlated with the number of carbons used per repeat unit of the capsule polysaccharide during its biosynthesis (indicative of metabolic cost). Conclusion: Meningococcal virulence in the zebrafish embryo largely depends on the presence of the polysaccharide capsule but the extent of the contribution is determined by its structure. The observed differences between the meningococcal isogenic capsule variants in zebrafish embryo virulence may depend on differences in metabolic cost.


Assuntos
Neisseria meningitidis , Peixe-Zebra , Animais , Cápsulas Bacterianas , Mamíferos , Neisseria meningitidis/metabolismo , Polissacarídeos/metabolismo , Virulência , Fatores de Virulência/metabolismo
9.
Microb Genom ; 8(12)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36748528

RESUMO

Staphylococcus aureus is a leading cause of skin and soft tissue infections and systemic infections. Wall teichoic acids (WTAs) are cell wall-anchored glycopolymers that are important for S. aureus nasal colonization, phage-mediated horizontal gene transfer, and antibiotic resistance. WTAs consist of a polymerized ribitol phosphate (RboP) chain that can be glycosylated with N-acetylglucosamine (GlcNAc) by three glycosyltransferases: TarS, TarM, and TarP. TarS and TarP modify WTA with ß-linked GlcNAc at the C-4 (ß1,4-GlcNAc) and the C-3 position (ß1,3-GlcNAc) of the RboP subunit, respectively, whereas TarM modifies WTA with α-linked GlcNAc at the C-4 position (α1,4-GlcNAc). Importantly, these WTA glycosylation patterns impact immune recognition and clearance of S. aureus. Previous studies suggest that tarS is near-universally present within the S. aureus population, whereas a smaller proportion co-contain either tarM or tarP. To gain more insight into the presence and genetic variation of tarS, tarM and tarP in the S. aureus population, we analysed a collection of 25 652 S. aureus genomes within the PubMLST database. Over 99 % of isolates contained tarS. Co-presence of tarS/tarM or tarS/tarP occurred in 37 and 7 % of isolates, respectively, and was associated with specific S. aureus clonal complexes. We also identified 26 isolates (0.1 %) that contained all three glycosyltransferase genes. At sequence level, we identified tar alleles with amino acid substitutions in critical enzymatic residues or with premature stop codons. Several tar variants were expressed in a S. aureus tar-negative strain. Analysis using specific monoclonal antibodies and human langerin showed that WTA glycosylation was severely attenuated or absent. Overall, our data provide a broad overview of the genetic diversity of the three WTA glycosyltransferases in the S. aureus population and the functional consequences for immune recognition.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Ácidos Teicoicos/química , Ácidos Teicoicos/metabolismo , Proteínas de Bactérias/metabolismo , Códon sem Sentido/metabolismo
10.
Pathogens ; 10(8)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34451478

RESUMO

Chlamydia psittaci is traditionally regarded as a globally distributed avian pathogen that can cause zoonotic spill-over. Molecular research has identified an extended global host range and significant genetic diversity. However, Australia has reported a reduced host range (avian, horse, and human) with a dominance of clonal strains, denoted ST24. To better understand the widespread of this strain type in Australia, multilocus sequence typing (MLST) and ompA genotyping were applied on samples from a range of hosts (avian, equine, marsupial, and bovine) from Australia. MLST confirms that clonal ST24 strains dominate infections of Australian psittacine and equine hosts (82/88; 93.18%). However, this study also found novel hosts (Australian white ibis, King parrots, racing pigeon, bovine, and a wallaby) and demonstrated that strain diversity does exist in Australia. The discovery of a C. psittaci novel strain (ST306) in a novel host, the Western brush wallaby, is the first detection in a marsupial. Analysis of the results of this study applied a multidisciplinary approach regarding Chlamydia infections, equine infectious disease, ecology, and One Health. Recommendations include an update for the descriptive framework of C. psittaci disease and cell biology work to inform pathogenicity and complement molecular epidemiology.

11.
Sci Rep ; 11(1): 16516, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34389764

RESUMO

Chlamydia gallinacea is an obligate intracellular bacterium that has recently been added to the family of Chlamydiaceae. C. gallinacea is genetically diverse, widespread in poultry and a suspected cause of pneumonia in slaughterhouse workers. In poultry, C. gallinacea infections appear asymptomatic, but studies about the pathogenic potential are limited. In this study two novel sequence types of C. gallinacea were isolated from apparently healthy chickens. Both isolates (NL_G47 and NL_F725) were closely related to each other and have at least 99.5% DNA sequence identity to C. gallinacea Type strain 08-1274/3. To gain further insight into the pathogenic potential, infection experiments in embryonated chicken eggs and comparative genomics with Chlamydia psittaci were performed. C. psittaci is a ubiquitous zoonotic pathogen of birds and mammals, and infection in poultry can result in severe systemic illness. In experiments with embryonated chicken eggs, C. gallinacea induced mortality was observed, potentially strain dependent, but lower compared to C. psittaci induced mortality. Comparative analyses confirmed all currently available C. gallinacea genomes possess the hallmark genes coding for known and potential virulence factors as found in C. psittaci albeit to a reduced number of orthologues or paralogs. The presence of potential virulence factors and the observed mortality in embryonated eggs indicates C. gallinacea should rather be considered as an opportunistic pathogen than an innocuous commensal.


Assuntos
Infecções por Chlamydia/veterinária , Chlamydia/patogenicidade , Chlamydophila psittaci/patogenicidade , Doenças das Aves Domésticas/microbiologia , Psitacose/veterinária , Animais , Embrião de Galinha , Galinhas/microbiologia , Chlamydia/genética , Infecções por Chlamydia/microbiologia , Chlamydophila psittaci/genética , Estudos de Associação Genética , Filogenia , Psitacose/microbiologia , Virulência/genética
12.
BMC Genomics ; 22(1): 159, 2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33676404

RESUMO

BACKGROUND: Chlamydia abortus and Chlamydia psittaci are important pathogens of livestock and avian species, respectively. While C. abortus is recognized as descended from C. psittaci species, there is emerging evidence of strains that are intermediary between the two species, suggesting they are recent evolutionary ancestors of C. abortus. Such strains include C. psittaci strain 84/2334 that was isolated from a parrot. Our aim was to classify this strain by sequencing its genome and explore its evolutionary relationship to both C. abortus and C. psittaci. RESULTS: In this study, methods based on multi-locus sequence typing (MLST) of seven housekeeping genes and on typing of five species discriminant proteins showed that strain 84/2334 clustered with C. abortus species. Furthermore, whole genome de novo sequencing of the strain revealed greater similarity to C. abortus in terms of GC content, while 16S rRNA and whole genome phylogenetic analysis, as well as network and recombination analysis showed that the strain clusters more closely with C. abortus strains. The analysis also suggested a closer evolutionary relationship between this strain and the major C. abortus clade, than to two other intermediary avian C. abortus strains or C. psittaci strains. Molecular analyses of genes (polymorphic membrane protein and transmembrane head protein genes) and loci (plasticity zone), found in key virulence-associated regions that exhibit greatest diversity within and between chlamydial species, reveal greater diversity than present in sequenced C. abortus genomes as well as similar features to both C. abortus and C. psittaci species. The strain also possesses an extrachromosomal plasmid, as found in most C. psittaci species but absent from all sequenced classical C. abortus strains. CONCLUSION: Overall, the results show that C. psittaci strain 84/2334 clusters very closely with C. abortus strains, and are consistent with the strain being a recent C. abortus ancestral species. This suggests that the strain should be reclassified as C. abortus. Furthermore, the identification of a C. abortus strain bearing an extra-chromosomal plasmid has implications for plasmid-based transformation studies to investigate gene function as well as providing a potential route for the development of a next generation vaccine to protect livestock from C. abortus infection.


Assuntos
Infecções por Chlamydia , Chlamydia , Chlamydophila psittaci , Animais , Chlamydia/genética , Chlamydophila psittaci/genética , Genômica , Tipagem de Sequências Multilocus , Filogenia , RNA Ribossômico 16S/genética
13.
Emerg Infect Dis ; 26(10): 2520-2522, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32946739

RESUMO

In 2016, an outbreak of Chlamydia avium infection occurred among Picazuro pigeons (Patagioenas picazuro) living in an aviary in the Netherlands. Molecular typing revealed a unique strain of C. avium. Our findings show that C. avium infection, which usually causes subclinical infection, can cause fatal disease in pigeons.


Assuntos
Infecções por Chlamydia , Chlamydia , Animais , Columbidae , Países Baixos/epidemiologia
14.
Methods Mol Biol ; 2042: 69-86, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31385271

RESUMO

Developed two decades ago as a molecular method to provide definite characterization of a bacterial isolate, Multilocus Sequence Typing (MLST) is today globally adopted as a universal fine-detailed molecular typing tool and has been applied to numerous pathogenic and nonpathogenic bacterial as well eukaryotic organisms. MLST utilizes DNA sequence of several conserved housekeeping (HK) genes which are assigned an allelic number, which then collectively constitute an allelic profile or sequence type (ST), a "molecular barcode" of the interrogated bacterial strain or a eukaryotic organism. Here, we describe the principles and molecular approaches for generating MLST data for an analysis of a bacteria in the order Chlamydiales, using a Chlamydia pecorum-specific MLST scheme as an example.


Assuntos
Técnicas de Tipagem Bacteriana/métodos , Chlamydiales/genética , Tipagem de Sequências Multilocus/métodos , Chlamydia/classificação , Chlamydia/genética , Infecções por Chlamydia/microbiologia , Chlamydiales/classificação , DNA Bacteriano/genética , Eletroforese em Gel de Ágar/métodos , Genes Essenciais , Humanos , Reação em Cadeia da Polimerase/métodos , Análise de Sequência de DNA/métodos
15.
BMC Genomics ; 19(1): 130, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29426279

RESUMO

BACKGROUND: Chlamydia trachomatis (Ct) plasmid has been shown to encode genes essential for infection. We evaluated the population structure of Ct using whole-genome sequence data (WGS). In particular, the relationship between the Ct genome, plasmid and disease was investigated. RESULTS: WGS data from 157 Ct isolates deposited in the Chlamydiales pubMLST database ( http://pubMLST.org/chlamydiales/ ) were annotated with 902 genes including the core and accessory genome. Plasmid associated genes were annotated and a plasmid MLST scheme was defined allowing plasmid sequence types to be determined. Plasmid allelic variation was investigated. Phylogenetic relationships were examined using the Genome Comparator tool available in pubMLST. Phylogenetic analyses identified four distinct Ct core genome clusters and six plasmid clusters, with a strong association between the chromosomal genotype and plasmid. This in turn was linked to ompA genovars and disease phenotype. Horizontal genetic transfer of plasmids was observed for three urogenital-associated isolates, which possessed plasmids more commonly found in isolates resulting from ocular infections. The pgp3 gene was identified as the most polymorphic plasmid gene and pgp4 was the most conserved. CONCLUSION: A strong association between chromosomal genome, plasmid type and disease was observed, consistent with previous studies. This suggests co-evolution of the Ct chromosome and their plasmids, but we confirmed that plasmid transfer can occur between isolates. These data provide a better understanding of the genetic diversity occurring across the Ct genome in association with the plasmid content.


Assuntos
Chlamydia trachomatis/genética , Cromossomos Bacterianos/genética , Genoma Bacteriano/genética , Genômica/métodos , Plasmídeos/genética , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/classificação , Chlamydia trachomatis/fisiologia , Genes Bacterianos/genética , Variação Genética , Humanos , Filogenia , Especificidade da Espécie , Sequenciamento Completo do Genoma
16.
BMC Vet Res ; 13(1): 370, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29191191

RESUMO

BACKGROUND: Chlamydia suis is an important, globally distributed, highly prevalent and diverse obligate intracellular pathogen infecting pigs. To investigate the prevalence and genetic diversity of C. suis in China, 2,137 nasal, conjunctival, and rectal swabs as well as whole blood and lung samples of pigs were collected in 19 regions from ten provinces of China in this study. RESULTS: We report an overall positivity of 62.4% (1,334/2,137) of C. suis following screening by Chlamydia spp. 23S rRNA-based FRET-PCR and high-resolution melting curve analysis and confirmatory sequencing. For C. suis-positive samples, 33.3 % of whole blood and 62.5% of rectal swabs were found to be positive for the C. suis tetR(C) gene, while 13.3% of whole blood and 87.0% of rectal swabs were positive for the C. suis tet(C) gene. Phylogenetic comparison of partial C. suis ompA gene sequences revealed significant genetic diversity in the C. suis strains. This genetic diversity was confirmed by C. suis-specific multilocus sequence typing (MLST), which identified 26 novel sequence types among 27 examined strains. Tanglegrams based on MLST and ompA sequences provided evidence of C. suis recombination amongst the strains analyzed. CONCLUSIONS: Genetically highly diverse C. suis strains are exceedingly prevalent in pigs. As it stands, the potential pathogenic effect of C. suis on pig health and production of C. suis remains unclear and will be the subject of further investigations. Further study is also required to address the transmission of C. suis between pigs and the risk of 'spill-over' and 'spill-back' of infections to wild animals and humans.


Assuntos
Infecções por Chlamydia/veterinária , Chlamydia/genética , Chlamydia/isolamento & purificação , Doenças dos Suínos/microbiologia , Animais , Infecções Assintomáticas , Sangue/microbiologia , China/epidemiologia , Chlamydia/classificação , Infecções por Chlamydia/genética , Túnica Conjuntiva/microbiologia , Transferência Ressonante de Energia de Fluorescência/veterinária , Variação Genética , Pulmão/microbiologia , Cavidade Nasal/microbiologia , Filogenia , RNA Ribossômico 23S/genética , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Reto/microbiologia , Suínos , Doenças dos Suínos/epidemiologia
17.
BMC Genomics ; 18(1): 949, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29212448

RESUMO

BACKGROUND: Chlamydia (C.) gallinacea is a recently identified bacterium that mainly infects domestic chickens. Demonstration of C. gallinacea in human atypical pneumonia suggests its zoonotic potential. Its prevalence in chickens exceeds that of C. psittaci, but genetic and genomic research on C. gallinacea is still at the beginning. In this study, we conducted whole-genome sequencing of C. gallinacea strain JX-1 isolated from an asymptomatic chicken, and comparative genomic analysis between C. gallinacea strains and related chlamydial species. RESULTS: The genome of C. gallinacea JX-1 was sequenced by single-molecule, real-time technology and is comprised of a 1,059,522-bp circular chromosome with an overall G + C content of 37.93% and sequence similarity of 99.4% to type strain 08-1274/3. In addition, a plasmid designated pJX-1, almost identical to p1274 of the type strain, except for two point mutations, was only found in field strains from chicken, but not in other hosts. In contrast to chlamydial species with notably variable polymorphic membrane protein (pmp) genes and plasticity zone (PZ), these regions were conserved in both C. gallinacea strains. There were 15 predicted pmp genes, but only B, A, E1, H, G1 and G2 were apparently intact in both strains. In comparison to chlamydial species where the PZ may be up to 50 kbp, C. gallinacea strains displayed gene content reduction in the PZ (14 kbp), with strain JX-1 having a premature STOP codon in the cytotoxin (tox) gene, while tox gene is intact in the type strain. In multilocus sequence typing (MLST), 15 C. gallinacea STs were identified among 25 strains based on cognate MLST allelic profiles of the concatenated sequences. The type strain and all Chinese strains belong to two distinct phylogenetic clades. Clade of the Chinese strains separated into 14 genetically distinct lineages, thus revealing considerable genetic diversity of C. gallinacea strains in China. CONCLUSIONS: In this first detailed comparative genomic analysis of C. gallinacea, we have provided evidence for substantial genetic diversity among C. gallinacea strains. How these genetic polymorphisms affect C. gallinacea biology and pathogenicity should be addressed in future studies that focus on phylogenetics and host adaption of this enigmatic bacterial agent.


Assuntos
Proteínas de Bactérias/genética , Galinhas , Infecções por Chlamydia/veterinária , Chlamydia/genética , Variação Genética , Genoma Bacteriano , Doenças das Aves Domésticas/microbiologia , Animais , China , Chlamydia/patogenicidade , Infecções por Chlamydia/epidemiologia , Infecções por Chlamydia/genética , Infecções por Chlamydia/microbiologia , Genótipo , Epidemiologia Molecular , Tipagem de Sequências Multilocus/métodos , Filogenia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/genética , Análise de Sequência de DNA/métodos
18.
Open Biol ; 7(9)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28931649

RESUMO

The vast majority of streptococci colonizing the human upper respiratory tract are commensals, only sporadically implicated in disease. Of these, the most pathogenic is Mitis group member, Streptococcus pneumoniae Phenotypic and genetic similarities between streptococci can cause difficulties in species identification. Using ribosomal S2-gene sequences extracted from whole-genome sequences published from 501 streptococci, we developed a method to identify streptococcal species. We validated this method on non-pneumococcal isolates cultured from cases of severe streptococcal disease (n = 101) and from carriage (n = 103), and on non-typeable pneumococci from asymptomatic individuals (n = 17) and on whole-genome sequences of 1157 pneumococcal isolates from meningitis in the Netherlands. Following this, we tested 221 streptococcal isolates in molecular assays originally assumed specific for S. pneumoniae, targeting cpsA, lytA, piaB, ply, Spn9802, zmpC and capsule-type-specific genes. Cluster analysis of S2-sequences showed grouping according to species in line with published phylogenies of streptococcal core genomes. S2-typing convincingly distinguished pneumococci from non-pneumococcal species (99.2% sensitivity, 100% specificity). Molecular assays targeting regions of lytA and piaB were 100% specific for S. pneumoniae, whereas assays targeting cpsA, ply, Spn9802, zmpC and selected serotype-specific assays (but not capsular sequence typing) showed a lack of specificity. False positive results were over-represented in species associated with carriage, although no particular confounding signal was unique for carriage isolates.


Assuntos
Proteínas de Bactérias/genética , DNA Bacteriano/genética , Genoma Bacteriano , Infecções Pneumocócicas/diagnóstico , Proteínas Ribossômicas/genética , Streptococcus pneumoniae/genética , Técnicas de Tipagem Bacteriana , Portador Sadio , Expressão Gênica , Humanos , Países Baixos , Filogenia , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/patologia , Análise de Sequência de DNA , Índice de Gravidade de Doença , Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/isolamento & purificação
19.
FEBS Open Bio ; 7(9): 1302-1315, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28904860

RESUMO

NrrF is a small regulatory RNA of the human pathogen Neisseria meningitidis. NrrF was previously shown to repress succinate dehydrogenase (sdhCDAB) under control of the ferric uptake regulator (Fur). Here, we provide evidence that cytochrome bc1 , encoded by the polycistronic mRNA petABC, is a NrrF target as well. We demonstrated differential expression of cytochrome bc1 comparing wild-type meningococci and meningococci expressing NrrF when sufficient iron is available. Using a gfp-reporter system monitoring translational control and target recognition of sRNA in Escherichia coli, we show that interaction between NrrF and the 5' untranslated region of the petABC mRNA results in its repression. The NrrF region essential for repression of petABC was identified by site-directed mutagenesis and is fully conserved among meningococci. Our results provide further insights into the mechanism by which Fur controls essential components of the N. meningitidis respiratory chain. Adaptation of cytochrome bc1 complex component levels upon iron limitation is post-transcriptionally regulated via the small regulatory RNA NrrF.

20.
FEBS Open Bio ; 7(6): 777-788, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28593133

RESUMO

The conserved RNA-binding protein, Hfq, has multiple regulatory roles within the prokaryotic cell, including promoting stable duplex formation between small RNAs and mRNAs, and thus hfq deletion mutants have pleiotropic phenotypes. Previous proteome and transcriptome studies of Neisseria meningitidis have generated limited insight into differential gene expression due to Hfq loss. In this study, reversed-phase liquid chromatography combined with data-independent alternate scanning mass spectrometry (LC-MSE) was utilized for rapid high-resolution quantitative proteomic analysis to further elucidate the differentially expressed proteome of a meningococcal hfq deletion mutant. Whole-cell lysates of N. meningitidis serogroup B H44/76 wild-type (wt) and H44/76Δhfq (Δhfq) grown in liquid growth medium were subjected to tryptic digestion. The resulting peptide mixtures were separated by liquid chromatography (LC) prior to analysis by mass spectrometry (MSE). Differential expression was analyzed by Student's t-test with control for false discovery rate (FDR). Reliable quantitation of relative expression comparing wt and Δhfq was achieved with 506 proteins (20%). Upon FDR control at q ≤ 0.05, 48 up- and 59 downregulated proteins were identified. From these, 81 were identified as novel Hfq-regulated candidates, while 15 proteins were previously found by SDS/PAGE/MS and 24 with microarray analyses. Thus, using LC-MSE we have expanded the repertoire of Hfq-regulated proteins. In conjunction with previous studies, a comprehensive network of Hfq-regulated proteins was constructed and differentially expressed proteins were found to be involved in a large variety of cellular processes. The results and comparisons with other gram-negative model systems, suggest still unidentified sRNA analogs in N. meningitidis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...